
v2.22

Numerically Exact Many-Body Dynamics of Indistinguishable Particles

– User Manual –

Contact: mctdhx@ultracold.org

Download and Support: http://ultracold.org/forum

by Axel U. J. Lode and Marios C. Tsatsos

mailto:mctdhx@ultracold.org
http://ultracold.org/forum

Abstract

This document is intended to guide any potential user to the installation and use of the
MCTDH-X program package. MCTDH-X is a highly efficient numerical algorithm to solve
the many-body interacting Schrödinger equation. The present manual describes the basic
philosophy and structure of the program and the workflow of the MCTDH-X package. In
particular, it explains how to operate and control the main program and the analysis routines
from the respective input files.The output of the main program’s numerical computations is
visualized with bash scripts as images and video files with any desired plotting or data pro-
cessing program. A description of the usage of predefined scripts is included in the present
manual. Multiple computations, such as parameter scans can be automated with the pro-
vided “Monster” script. Finally, Mercurial, the version management system, is described and
development and good programming guidelines are suggested.

2

Contents

1 Installation 6
1.1 Prerequisites for the main program . 6
1.2 Prerequisites for full functionality . 6
1.3 Running the installation . 6

2 An MCTDH-X Tutorial 7
2.1 Computing an Eigenstate by Relaxation . 7
2.2 Computing the Time-Evolution of a System . 10

3 Program Structure 11
3.1 Main Program . 12
3.2 Analysis Program . 12
3.3 Scripts . 12

4 Input File driven Usage MCTDH-X 13
4.1 Defining the Hamiltonian . 13
4.2 Running the computation and analysis . 14
4.3 Available Visualization Scripts . 29
4.4 Configuring the Monster Script . 31

5 MCTDH-X output documentation 34
5.1 Main program output . 34

5.1.1 Output structure in standard MCTDHX computations 34
5.1.2 Output structure in block Davidson relaxations 34
5.1.3 Output structure in multilevel MCTDHX computations 34

5.2 Analysis program output . 37

6 Developer Guidelines 38

7 Version Management 38

A Predefined one-body potentials 41

B Predefined interaction potentials 44

C Structure of the output of the analysis program 45

3

List of Figures

1 Output of an MCTDH-X computation in the shell. 9
2 Visualization of MCTDH-X relaxation using gnuplot. The density ρ(x) and the first

two natural orbitals φ
(NO)
1 (x) and φ

(NO)
2 (x) are shown as red, green and blue line,

respectively. 9
3 Checking the status of an MCTDH-X computation with mctdhx status.sh. 11

List of Tables

2 Aliases and scripts provided with the MCTDH-X installation. 7
3 MCTDH-X main program input file parameters. 20
8 MCTDH-X analysis parameters . 29
9 List of available visualization scripts. 30
10 Parameters inside ParameterScan.inp. 34
11 NO PR.out file structure. 34
12 Structure of the Error.dat file. 35
13 Timing.dat file structure. 35
14 <time>orbs.dat file structure. 35
15 Structure of the <time>coef.dat files . 36
16 Structure of the <time>coef.dat files for block Davidson computations 36
17 <time>orbs.dat file structure for block Davidson computations. 36
18 NO PR.out file structure for computations with Multi Level=.T.. 37
19 <time>orbs.dat file structure for multilevel computations. 37
20 Predefined potentials and parameters. 43
21 Predefined time-independent and time-dependent interaction potentials. 44
22 Structure of the <time>N<N>M<M>x-density.dat and <time>N<N>M<M>k-density.dat

files. 45
23 The nonescape probability output file Nonescape. 45
24 Structure of the Entropy.dat file. 45
25 Structure of the TwoBody Entropy.dat file . 46
26 Structure of the <time>N<N>M<M>x-correlations.dat and <time>N<N>M<M>k-correlations.dat

files for multilevel computations. 46
27 Structure of the <time>N<N>M<M>x-correlations.dat and <time>N<N>M<M>k-correlations.dat

files. 46
28 Structure of the <time>N<N>M<M><x/k>corr<1/2>restr.dat files. 47
29 Structure of the <time>N<N>M<M>x/k-order-<order>-correlations1D.dat 47
30 Structure of the CorrelationCoefficient.dat file. This file is created when

Correlation Coefficient it true. 47
31 Structure of the <time>N<N>M<M>x-StructureFactor.dat files. These files are out-

put if StructureFactor is true. 47
32 Structure of the lossops N2 <border>.dat files. 47
33 The structure of the <time>N<N>M<M><x/k><Slice 1>-<Slice 2>-correlations.dat

files . 48
34 The structure of the <time>N<N>M<M><x/k>-SkewCorrelations.dat files 48
35 The structure of the <time>N<N>M<M><x/k>SingleShots.dat files 48

4

36 The structure of the <time>N<N>M<M><x/k>CentreOfMass.dat files 48
37 The structure of the <time>N<N>M<M>phase.dat files. 48

5

1 INSTALLATION

1 Installation

1.1 Prerequisites for the main program

The prerequisites to install the MCTDH-X program are Fortran compilers (Intel, PGI or GNU).
Fast Fourier transforms need to be provided by either Intel MKL or FFTW libraries. An FFTW
source is included in the package and will be compiled during the installation if FFTW is selected.
LAPACK routines also have to provided as a library – either within the Intel MKL, or, if selected
an included OpenBLAS source will be compiled and linked. A version of MPI, which provides
an MPI Fortran compiler wrapper, such as mpif90, is also a prerequisite. For the successful
compilation of the included Mercurial version management, python development headers have to
be installed on the system. In Debian-based Linux distributions just install the packages gfortran,
libopenmpi-dev, openmpi-common, openmpi-bin with your package/software management. In
Ubuntu, for instance, you may do the following in terminal:

sudo apt-get install gfortran libopenmpi-dev openmpi-common openmpi-bin

1.2 Prerequisites for full functionality

To make the MCTDH-X software fully functional, the following packages are needed: python,
libpython-dev, scons, gnuplot, mercurial, mplayer2, mencoder. With these packages, the
integrated software management of the MCTDH-X package, and its visualization (movie) scripts
should be fully functional. In Ubuntu, for instance, you may type the following in terminal to
install the prerequisites:

sudo apt-get install python libpython-dev scons gnuplot mercurial mplayer2 mencoder

1.3 Running the installation

After the prerequisites are fulfilled, to install MCTDH-X one has to first unpack the program
package (this unpacking can be skipped when you download from the repository with hg clone):

tar -xvf mctdhx.tgz

Subsequently, the program can be installed by running the interactive installation script:

./Install_MCTDHX.sh

The script offers several configuration options, like different platforms (Generic, mpif90, CrayXC40)
and compilers (Intel, GNU, PGI,ftn). On a new platform, a modification of the Makefile or
scons script might nevertheless be necessary. If the Generic build option is selected, the build
is performed with gfortran and the included OpenBlas and FFTW sources. The mpif90 option
will use either mpif90 or mpif90.openmpi for the build and the CrayXC40 option selects the
Makefile.hornet for the Cray computer Hornet and uses the Cray Fortran compilers ftn. To get
further information (if you are not at all familiar with GNU make and the build on your platform
fails), contact and seek help at mctdhx@ultracold.org or in the forum http://ultracold.org/forum.
The installation script creates a few aliases and appends to the $PATH environment variable. It
creates a file .mctdhxrc and .guantumrc and appends to the .bashrc to source the .mctdhxrc,
such that the new commands become available. Available commands/aliases are collected in the
following table 2.

6

mailto:mctdhx@ultracold.org
http://ultracold.org/forum

2 AN MCTDH-X TUTORIAL

Alias What it does
cdm takes you to the MCTDH-X installation directory
mcg.sh <X> MCTDH-X code grep. Script which parses the MCTDH-X code and scripts

for the argument <X>
data miner.sh run an interactively configured analysis on computations in all subdirecto-

ries
MCTDHX executes the the program (for interactive use, only. Most queueing systems

prevent aliases from working and the executables then have to be copied
and run in the current working directory)

MCTDHX analysis executes the the analysis program (for interactive use, only. Most queueing
systems prevent aliases from working and the executables have to be copied
and run in the current working directory)

libcp copy the dynamic library libmctdhx.so to the current working directory
inpcp copy the example inputs MCTDHX.inp,analysis.inp to the current direc-

tory
bincp copies the executables of the main and analysis programs to the current

directory.
libmake will recompile the dynamic library libmctdhx.so

x-make will recompile the whole program
mctdhx hg alias to the supplied mercurial distribution (can be used for version man-

agement and to update the program)∗

mctdhx gnuplot supplied gnuplot program to visualize data∗.
mctdhx mencoder supplied mencoder program to make movies from gnuplot images∗.
mctdhx mplayer supplied mplayer program to view the movies∗.

Table 2: Aliases and scripts provided with the MCTDH-X installation.
(aliases marked by a ∗ are only created if respective included software is not present in the system)

2 An MCTDH-X Tutorial

A straightforward way of familiarizing youself with the usage of MCTDH-X, without further read-
ing the remainder of this user manual, is to follow this step-by-step tutorial. The tutorial includes
running the main program to compute a many-body eigenstate as well as to compute a time-
evolution for bosons after changeing the potential. Subsequently, the analysis program is run to
extract some quantities of interest that then are visualized with the included bash scripts to obtain
videos of the computed dynamics.

2.1 Computing an Eigenstate by Relaxation

After the installation script has finished, you should make sure that the aliases and links are
working. To do so, first type

source ~/.mctdhxrc

ls $MCTDHXDIR

. Now you should see the executables MCTDHX <compiler>, MCTDHX analysis <compiler> and the
library libmctdhx.so. If you don’t, the installation did not terminate correctly and you should

7

2.1 Computing an Eigenstate by Relaxation 2 AN MCTDH-X TUTORIAL

check what went wrong (see the log files created in ./log/) and contact the developers in case
you cannot find out or fix the error.

To get started, it’s best to create a directory for the tutorial computations:

mkdir ~/MCTDH-X-Tutorial

cd ~/MCTDH-X-Tutorial

. To copy all necessary files to run the computation in this directory, we make use of the alias
inpcp and libcp which copy the example inputs MCTDHX.inp, analysis.inp and the dynamic
library libmctdhx.so to the current directory.

libcp

inpcp

ls

. The ls command should show a list including MCTDHX.inp, analysis.inp, and libmctdh.so.
With these three files, we’re able to run the main and analysis programs. The default MCTDHX.inp
is configured to compute the eigenstate of N = 2 bosons in a one-dimensional harmonic oscillator
potential with unit frequency and with M = 4 orbitals. To make things a little more interesting,
let’s change the the number of bosons to N = 50 by editing MCTDHX.inp and setting Npar = 50

in the System Parameters namelist, i.e.,

gedit ./MCTDHX.inp

. Since we’re going to compute some dynamics later, we use the opportunity to also enlarge the
number of grid points and the grid extension in the DVR Parameters namelist (a bit further down
in the MCTDHX.inp file). We set:

Npar = 50

NDVR_X = 256

x_initial = -12.d0

x_final = 12.d0

. With these adjustments made, we can run the relaxation to the groundstate of the harmonic
oscillator potential by typing

MCTDHX

. This should show an output similar to the following figure 1. This computation is going to take
a minute so sit back and relax or just get a coffee, until it finished. The energy you should see on
screen in the final propagation step should be identical to 259.14031953. To visualize the output,
let’s use gnuplot:

mctdhx_gnuplot

plot "20.0000000orbs.dat" u 1:8, "" u 1:(sqrt($24**2)), "" u 1:(sqrt($22**2))

. The plot command visualizes the density ρ(x) (column 8) and the first two natural orbitals

φ
(NO)
1 (x) and φ

(NO)
2 (x) (column 24 and 22, respectively) in the last ASCII output file of the

relaxation 20.0000000orbs.dat. For a full explanation of the structure of this file, see table 14.
In figure 2, you can see a screenshot of what your gnuplot output should look alike. To find out
the occupations of the natural orbitals, let’s have a look at the last line of the NO PR.out file:

8

2.1 Computing an Eigenstate by Relaxation 2 AN MCTDH-X TUTORIAL

Figure 1: Output of an MCTDH-X computation in the shell.

Figure 2: Visualization of MCTDH-X relaxation using gnuplot. The density ρ(x) and the first two

natural orbitals φ
(NO)
1 (x) and φ

(NO)
2 (x) are shown as red, green and blue line, respectively.

tail -n 1 NO_PR.out

. We get

20.00000000000031 0.5453108642221355E-02 0.1164565131824607E-01 0.2265201507726221E-01 0.9602492249622707 259.1403195319616

which is the time t, the natural occupations ρ
(NO)
M (t), ρ

(NO)
M−1 (t), ..., ρ

(NO)
1 (t) and the energy of

the system E(t), in the final column (see also table 11 for the structure of the NO PR.out file). We
conclude that despite the strong interactions of λ0 = 1.0, our eigenstate of the N = 50 bosons in the

9

2.2 Computing the Time-Evolution of a System 2 AN MCTDH-X TUTORIAL

harmonic confinement is close to condensed, since 96% of the bosons sit in the lowest single-particle
state. In the single-well, this absence of fragmentation in the groundstate is anticipated. There
is, however, numerous examples on the emergence of fragmentation in the dynamics of ultracold
bosonic systems. To see the occurence of fragmentation, it’s therefore instructive to change the
potential in which our eigenstate was computed and trigger some dynamics.

2.2 Computing the Time-Evolution of a System

To propagate a given initial state in time, one has to change only a few parameters in the
MCTDHX.inp file. To start, it’s best to create a subdirectory for the propagation inside the
MCTDH-X-Tutorial directory which contains the relaxation:

cd ~/MCTDH-X-Tutorial

mkdir propagation-double-well

. As indicated by the name, we’re going to propagate the groundstate of the harmonic potential,
which we computed in the previous subsection, in a double well potential. First, we copy the
necessary files to the newly created directory:

cp MCTDHX.inp libmctdhx.so analysis.inp PSI_bin CIc_bin ./propagation-double-well/

cd propagation-double-well

. Subsequently, the input file needs to be adapted with a text-editor, i.e.,

gedit MCTDHX.inp

. To make the program propagate the initial state in the binary data files PSI bin and CIc bin,
the following parameters have to be adapted:

Job_Prefactor=(0.d0,-1.d0)

GUESS=’BINR’

Binary_Start_Time=20.0d0

as also explained in the inlined documentation in the MCTDHX.inp file and in table 3, Job Prefactor

= (0.d0, -1.d0) triggers the program to do a forward time propagation, GUESS = ’BINR’ will
make it read the initial state from the binary files CIc bin and PSI bin, and Binary Start Time

= 20.d0 chooses the time at which the binary files CIc bin and PSI bin are read for the initial
state. Now, in order to define the parameters specifying the propagation in the double well, we
change the following variables in the MCTDHX.inp :

Integration_Stepsize=0.0001d0

whichpot="h+d"

parameter1=2.d0

parameter2=8.d0

parameter3=1.d0

. Integration Stepsize=0.0001d0 specifies the initial time-step (compare table 3). The which pot

= ‘‘h+d’’ variable selects a potential which is the sum of a displaced harmonic potential and a
discplaced Gaussian barrier in its center. To define the potential parameter1=2.d0 is the dis-
placement, parameter2=8.d0 specifies the height of the barrier in the center of the parabola and
parameter3=1.d0 gives the width of this barrier. Finally, we select the appropriate integrator to
propagate the coeffcients’ equations of motion:

10

3 PROGRAM STRUCTURE

Figure 3: Checking the status of an MCTDH-X computation with mctdhx status.sh.
The left panel displays the time-evolution of fragmentation, i.e., 1−

∑M
i=2 ρ

(NO)
i (t), in the system

and the right panel shows a snapshot of the current density.

Coefficients_Integrator=’MCS’

. Now the input is adjusted to start the propagation and we type

MCTDHX

to run it and wait until it finished. After it has finished, we can get a quick visualization of the
final state by typing

mctdhx_status.sh

gnome-open status.png

. The script mctdhx status.sh plots the time-evolution of the fragmentation in a computation
as well as a snapshot of the current density. The picture you should see is displayed in Figure 3.
Finally, we could invoke several different bash-scripts to visualize the computed time-evolution as
movies (cf. table 9) or simply run all available scripts with the visualization master script, like so:

vms.sh all $PWD -7.0 9.0

(cf. also section 4.3). vms.sh automatically runs the analysis program on the data in the present di-
rectory and creates videos of the density as well as the correlation functions of the system. For refer-
ence, these are also available on the website at
http://ultracold.org/documentation.

3 Program Structure

The MCTDH-X package contains a main program to perform the actual numerical task and an
analysis program that is used to compute the desired quantities of analysis from the many-body
wavefunction. For the purpose of visualization, bash scripts that generate .mpg or .avi video files by
running gnuplot and mencoder are provided. A source tarball of gnuplot and mencoder are provided
with MCTDH-X in the External Software subdirectory and installed with the installation script,

11

http://ultracold.org/documentation

3.1 Main Program 3 PROGRAM STRUCTURE

as mentioned above. To automate and simplify the use of the main program, the analysis program
as well as the visualization bash scripts, the program package also contains a graphical user interface
(Guantum), as well as scripts that automate series of computations (MonsterScript.sh) and a
script for the automation of data processing (data miner.sh).

3.1 Main Program

The main program can be run by typing MCTDHX (in wrappers or in runscripts the MCTDHX alias
might not work, and one needs to use MCTDHX intel, MCTDHX pgf or MCTDHX gcc). Although, in the
case of a computationally intense task, it is a lot faster to use the shared memory and distributed
memory parallelization of the program and run it with one the various instances of MPI launch-
ers (such as mpirun,mpiexec, mpiexec.hydra,aprun,...). Examples for running MCTDHX in
parallel can be found in the example PBS scripts directory PBS Scripts. Since the configuration
of such an hybridly parallel job is complicated, it is easier to just use the MonsterScript.sh

script that will automate whole series of hybridly parallel computations. They can be found in the
./Computation Scripts directory. If a manual configuration of a task is needed or desired, this
is done by adapting one of the PBS runscript examples. Depending on the hardware architecture,
the most efficient way is usually to run MCTDH-X with at least as many MPI processes as there
are orbitals. The OpenMP shared memory parallelization takes care of efficiently performing the
computational task inside of each MPI process. The program’s structure is entirely modular, i.e.,
all subroutines are collected in Fortran modules. To inspect the program structure, please consult
the html documentation by opening the index.html file in the documentation/html subdirectory.
In this html documentation all important variables are explained and for each routine call- and
caller-graphs are given.

3.2 Analysis Program

The analysis program can be run by typing MCTDHX analysis. The analysis program is serial,
i.e., no shared or distributed memory parallelization is used so far. The program is also en-
tirely modular and the structure, call- and caller graphs, as well as a documentation of impor-
tant variables is available in the same html documentation as for the main program (see file
documentation/html/index.html).

3.3 Scripts

In the subdirectory ./bin/Scripts there is the MonsterScript.sh script that can configure whole
series of computations. The input file ParameterScan.inp is in the ./Input Examples directory
and contains an in-line documentation. MonsterScript.sh allows a scan of 5 user-defined pa-
rameters for the relaxation, and 5 user-defined parameters for the subsequent propagations. A
parameter scan for potential, DVR, particle or orbital number, and magnitude and/or width of
the interaction can be configured, for instance. The configuration of MonsterScript.sh is de-
tailed in table 10. The directory ./Computation Scripts contains the visualization master script,
vms.sh, that automatically runs the MCTDHX analysis program and visualizes a given computa-
tion. The possible different visualization videos and plots are realized as bash scripts which can
be found in the ./Visualization Scripts directory.

12

4 INPUT FILE DRIVEN USAGE MCTDH-X

4 Input File driven Usage MCTDH-X

The basic workflow of a numerical solution of the time-dependent many-boson Schrödinger equa-
tion, Ĥ|Ψ〉 = i∂t|Ψ〉 (TDSE), with MCTDH-X is the following:

1. Define the Hamiltonian Ĥ.
Modify Get InterParticle Potential.F and Get 1bodyPotential.F.

2. Define the initial state |Ψ〉.
Modify Get Initial Coefficients.F and Get Initial Orbitals.F.

3. Solve the TDSE by propagating in real or imaginary time.
libmake, then libcp, (maybe inpcp, modify MCTDHX.inp),finally MCTDHX.

4. Analyze and visualize the solution |Ψ〉.
(maybe inpcp, modify analysis.inp), run MCTDHX analysis, process ASCII data with
gnuplot.

Steps (1) through to (3) are done with the main program and step (4) is done with the analysis pro-
gram and movie bash scripts. There is several ways of automatization of the above 4-step scheme.
As mentioned above, there is a scripts called MonsterScript.sh in the Computation Scripts

directory that allows a fully integrated and automated processing of whole series of computations.
Finally, the data processing to videos is automated in the visualization master script vms.sh.

4.1 Defining the Hamiltonian

The Hamiltonians that can be treated by the MCTDH-X package in its current implementation
are those with maximally two-body operators. In general such a Hamiltonian hence contains the
kinetic energy T̂ and the external potential V̂ and an interparticle interaction Ŵ :

Ĥ =
N∑
i=1

(T̂i + V̂i) +
N∑

i<j=1

Ŵij. (1)

To fully define this Hamiltonian in dimensionless units [see Phys. Rev. A 77, 033613 (2008)] one
has to define the one-body potential V̂ , and the two-body interaction Ŵ . It has to be stressed,
that both operators can be in principle time-dependent.

Specifying the one-body potential V̂ :

The one-body potential V̂ is specified in the file source/ini guess pot/Get 1bodyPotential.F.
This file contains a Fortran subroutine with a case selection for the dimensionality of the treated
problem. The potentials defined in this routine can be selected and modified with the input pa-
rameters whichpot, parameter1, parameter2, ..., parameter30 in MCTDHX.inp. Appendix
A collects the predefined potentials and parameters. If a custom potential is desired, it has to be
implementated in the file source/ini guess pot/Get 1bodyPotential.F (look there for the loops
which are enclosed by the if- exceptions for whichpot .eq. custom1D/custom2D/custom3D, re-
spectively).

13

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Specifying the two-body potential Ŵ :

The two-body interaction Ŵ is specified in the file Get InterParticle Potential.F in the di-
rectory source/ini guess pot/. This file contains a single Fortran subroutine with a case selec-
tion on the type of interparticle interaction and the evaluation of its action (Interaction Type

is the corresponding input variable). The standard types are a contact interaction potential
(Interaction Type=0,6) or short range Gaussian interaction (Interaction Type=1,2,3,4,5).
For these cases of a short-range interparticle interaction, the width of it can be adjusted with the
input variable Interaction Width in MCTDHX.inp. Generally, a non-contact interaction requires
Interaction Type > 0. Interaction type=5 is a time-dependent non-contact interaction and
Interaction type=6 allows the simulation of contact interactions with a time-dependent inter-
action strength. The different evaluation types that Interaction Type selects and the necessary
properties of the interaction potentials are also specified in the html documentation and the ex-
ample input in the directory Input Examples. If a custom interaction potential is desired, this
has to be implemented in the Get InterParticle Potential.F routine. The table in Appendix
B shows the predefined interparticle interaction potentials as well as how to configure them with
the input file’s parameters.

Defining the initial state |Ψ〉:

The MCTDH-X wavefunction is a multiconfigurational expansion with time-dependent coefficients
C~n(t) and time-dependent configurations |~n; t〉. In order to fully define the wavefunction,

|Ψ(t)〉 =
∑
{~n}

C~n(t)|~n; t〉, (2)

one has to define all coefficients C~n and all configurations |~n; t〉. In the case of a fully user-defined
guess, i.e., GUESS=‘HAND’ in the input file, the wavefunction is supplied via Fortran routines. The
coefficients are defined in the file source/ini guess pot/Get Initial Coefficients.F and the
orbitals from which the configurations are built are defined in the file Get Initial Orbitals.F

in the directory source/ini guess pot/. Both contain a single Fortran subroutine, that assigns
the corresponding array (for a documentation of the routines, please see the html documentation).
For a relaxation, i.e., the calculation of a certain eigenstate of the many-body Hamiltonian Ĥ,
usually it is a good choice to start from a Gross-Pitaevskii, i.e., single-configurational state with
|Ψ〉 = |N, 0, 0, ...〉. For a propagation there is also the possibility to restart the computation from
a previous one by specifying GUESS=‘BINR’ in the input file.

4.2 Running the computation and analysis

In this subsection, it is specified how to run the MCTDH-X program and analysis manually, i.e., by
configuring the MCTDHX.inp and analysis.inp input files and running the respective programs.
To read how to automate this process using the MonsterScript.sh and vms.sh scripts, please
consult the next subsection 4.3.

The input of the main program

14

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

To run the MCTDH-X program, it is best to have each calculation done in a separate direc-
tory. The program needs two files to perform the computation. First, the dynamic library,
libmctdhx.so, and second, the input file with computational/numerical parameters MCTDHX.inp.
The library contains the above four subroutines that define the Hamiltonian and the initial state
(Get Initial Coefficients.F, Get Initial Orbitals.F, Get InterParticle Potential.F,
Get 1bodyPotential.F). If any of these files was modified, the library has to be re-
compiled and copied to the computation’s directory! Recompiling the library libmctdhx.so

is conveniently achieved by issueing the command:

libmake

After compilation, the library can be copied to the working directory by typing

libcp

Finally, the input files should be copied to the working directory. This can be done by typing

inpcp .

The two files MCTDHX.inp and analysis.inp are now inside the working directory. The details of
the input variables in those files can be taken from the in-line documentation in the input file or
the html code documentation. The MCTDHX.inp file basically contains variables like the particle
number, the number of orbitals, the (dimensionless) interaction strength, number of primitive basis
functions, their type, details of the integration (integrator,stepsize,accuracy,order,...), and many
more. See table 3 for all currently available parameters in the main program and their meaning.

System Parameters Namelist
Parameter Meaning Options
JOB TYPE Select problem, i.e. MCTDH for

bosons, MCTDH for fermions or TDCI
for bosons.

Character, ‘BOS’, ‘FER’,
‘FCI’; Default ‘BOS’

Morb Select number of time-dependent, vari-
ationally optimized basis functions

Integer, no default.

Npar Select number of structureless parti-
cles

Integer, no default.

xlambda 0 Adjust prefactor of two-body potential
in the Hamiltonian

Real, no default.

mass Mass of the particles Real, default 1.d0
Job Prefactor Select which direction to propagate

the equations of motion in time.
Complex, (0.0d0,-1.0d0)
Forward propagation;
(0.0d0,+1.0d0) Backward
propagation, (-1.0d0,0.0d0)
(Improved) Relaxation;
Default (-1.d0,0.d0).

NProjections Number of times that the projection
operator P̂ is applied to the right-hand
side of the orbital equations of motion

Integer, default 2.

15

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

GUESS Specifying if the initial guess is
defined in .dat files, the rou-
tines Get Initial Orbitals.F,
Get Initial Coefficients.F, or in
the binary files CiC bin and Psi bin

Character, ‘HAND’ means
the Get Initial... routines
are used, ‘DATA’ means .dat
files will be read in, ‘BINR’
means * bin files will be read
in, default ‘HAND’ .

Diagonalize OneBodyh Select to use eigenfunctions
of the one-body potential in
Get 1bodyPotential.F

Logical, .T. or .F., .T.
only non-FFT1-DVRs2, i.e.,
DVR X/Y/Z6=4, default is
.F.

Binary Start Time Define point in time at which the
wavefunction is read from binary files
in the case of GUESS=‘BINR’

Real, no default.

Restart State If restarting from a Block Davidson
computation, this selects which state
in the block is used as the initial value.

Integer, default 1

Restart Orbital FileName Define filename of orbitals to read if
GUESS=‘DATA’

Character, no default.

Restart Coefficients FileName Define filename of coefficients to read
if GUESS=‘DATA’

Character, no default.

Vortex Seeding In propagations: Multiply initial or-
bitals with phase/density profile?

Logical, default .F.

Vortex Imprint In relaxations: Apply a projection op-
erator to a certain orbital density pro-
file?

Logical, default .F.

Profile If Vortex Imprint is true, this will
select the respective shape of the
imprinted (select ’tanh’,’poly’,’phase’,
or ’phase-x’ or define custom
profile in Get Vortex Profile.F in
/source/ini guess pot/)

Character, default ’tanh’

Fixed LZ Multiply fixed phase profile on the or-
bital in relaxations

Logical, default .F.

OrbLz How many times 2π the phase is going
to jump if Fixed LZ is true. If any
value is -666, the respective orbital is
unchanged.

Integer, default
0,0,0,0,0,0,0,0,0,0

DVR Namelist
DIM MCTDH Specifying the dimensionality of the

problem
Integer, 1,2 or 3, default 1.

NDVR X Specifying the number of DVR func-
tions in X dimension

Integer, default 256.

1Fast Fourier Transform
2Discrete Variable Representation

16

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

NDVR Y Specifying the number of DVR func-
tions in Y dimension

Integer, default 1.

NDVR Z Specifying the number of DVR func-
tions in Z dimension

Integer, default 1.

DVR X Which DVR will be used in X direction Integer, 1 means harmonic os-
cillator DVR, 3 means sine
DVR, 4 means FFT DVR and
5 exponential DVR, default 4.

DVR Y Which DVR will be used in Y direction Integer, 1 means harmonic os-
cillator DVR, 3 means sine
DVR, 4 means FFT DVR and
5 exponential DVR, default 4.

DVR Z Which DVR will be used in Z direction Integer, 1 means harmonic os-
cillator DVR, 3 means sine
DVR, 4 means FFT DVR and
5 exponential DVR, default 4.

x initial Where the spatial grid in X dimension
starts

Real, default −8.0.

x final Where the spatial grid in x dimension
stops

Real, default 8.0.

y initial Where the spatial grid in Y dimension
starts

Real, default −8.0.

y final Where the spatial grid in Y dimension
stops

Real, default 8.0.

z initial Where the spatial grid in Z dimension
starts

Real, default −8.0.

z final Where the spatial grid in Z dimension
stops

Real, default 8.0.

Integration Namelist
Time Begin Time at which the simulation shall

start
Real, default 0.0.

Time Final Time at which the simulation shall
stop

Real, default 20.0.

Time Max Maximal time Real, default 1.d99.
Output TimeStep Times at which orbital output shall be

written.
Real, default 0.1.

Output Coefficients Multiple of Output TimeStep at which
coefficient output shall be written

Real, default 1

Integration Stepsize Stepsize of the integration scheme (for
relaxation this is fixed, for propagation
this is adaptive)

Real, default 0.01

Error Tolerance Error tolerance for the integration
scheme

Real, default 1.d− 9

17

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Minimal Occupation Minimal occupation for not consider-
ing an eigenvalue as 0 in the inversion
of the density matrix elements

Real, default 1.d− 12

Minimal Krylov Minimal size of Krylov basis for coef-
ficients’ integration

Integer, default 4

Maximal Krylov Maximal size of Krylov basis for coef-
ficients’ integration

Integer, default 20

Orbital Integrator Integrator for the orbital equations of
motion

Character, ‘ABM’ or
‘OMPABM’ means that
(OpenMP parallelized)
Adams Bashforth Moulton
predictor corrector inte-
grator is used, ‘BS’ means
Bullirsch-Stör, ‘RK’ means
Runge-Kutta, and ‘STIFF’
means ZVODE specialized
to stiff equations is used;
default ‘OMPABM’.

Orbital Integrator Order Order of the integration of the orbitals’
integrator, choice depends on the Inte-
grator

Integer, for ‘RK’ it is 5 or 8,
for ‘ABM’/‘OMPABM’ it is 2
to 8, for ‘BS’ its 2 to 16, and
for ‘STIFF’ it is 1 or 2, de-
fault 7.

Orbital Integrator MaximalStepRestricts the maximum stepsize in the
orbital equations’ integration

Real, default 0.01.

Write ASCII Specifying wether ASCII files are out-
put during the computation

Logical, default .T..

Error Rescale TD Specifying a scale for the Er-
ror Tolerance parameter for time-
dependent one-body potentials.

Real, default 1.0.

LZ Trigger one-body angular momentum
operator in the Hamiltonian

Logical, .T. or .F., default .F.
.

OMEGAZ Prefactor of one-body angular momen-
tum operator.

Real, default 0.0.

STATE Which eigenstate of the Hamiltonian
to compute.

Integer, 1 means the
groundstate, default
1. Stable for Coeffi-
cients Integrator=‘DSL’
or ‘DAV’ .

18

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Coefficients Integrator Which integrator to use for the coeffi-
cients equations of motion.

Character, ‘MCS’ means
MCTDH SIL routine, ‘DSL’
means MCTDH SIL diag-
onalization routine, ‘DAV’
means Davidson diagonal-
ization, ‘BDV’ means block
Davidson diagonalization; no
default.

BlockSize If Block Davidson (BDV) is used as
integrator for the coefficients then this
selects the number of coefficient vec-
tors in the block

Integer, default 4

Olsen If Block Davidson is used as integrator
for the coefficients, this flag toggles the
Olsen correction (Jacobi-Davidson)

Logical, default .F.

RLX Emin If Block Davidson is used as integrator
for the coefficients then this selects the
lower energy bound for the block

Real, default -1.d90

RLX Emax If Block Davidson is used as integrator
for the coefficients then this selects the
upper energy bound for the block

Real, default 1.d90

Potential Namelist
whichpot Select from predefined list of poten-

tials, see table 20.
Character, no default.

parameter1 Parameters to tune predefined poten-
tials, see table 20.

Real, default 1.0.

parameter2-30 Parameters to tune predefined poten-
tials, see table 20.

Real, default 0.0.

Interaction Namelist
Which Interaction Select predefined interparticle interac-

tion potentials
Character, default ‘gauss’;
For time-dependent interac-
tions, ‘TDHIM’, ’TDgauss1’
a Gaussian sinusoidially
modulated amplitude, and
’TDgauss2’, a Gaussian
with sinusoidially modulated
width, are currently defined.

Interaction Width Modify parameter in the interparticle
interaction.

Real, default 0.15.

interaction parameter1-10 Parameters to tune predefined interac-
tion potentials, see table B.

Real, default 0.0.

19

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Interaction Type How the Local interaction potentials
Ŵsl and their action is evaluated

Integer, 0 means δ-like
contact interaction poten-
tial, 1 to 4 will use the routine
Get InterParticle Potential.F

to generate the interaction
potential. 1 means the
potential is separable and
hence one potential vector
is allocated for each spatial
dimension; 2 means the
potential depends on the
distance of the particles only,
hence, a tridiagonal repre-
sentation is used (only for
aequidistant DVRs 3,4 and
5); 3 means full interaction
matrix will be stored (very
large array!!!), 4 interac-
tion matrix evaluated with
successive FFT (IMEST);
5 means time-dependent
interaction with IMEST;
6 means time-dependent
contact interaction; 7 means
both contact and non-zero
ranged interactions with
IMEST; default 0.

Table 3: MCTDH-X main program input file parameters.

20

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Special parameters to treat multi-level atoms and spinors

In order to treat particles that have internal structure, like multileveled atoms or spinor particles,
a set of special input variables has been introduced to the above System Parameters Namelist.
These define the number of levels, the presence of a conical intersection and whether the interpar-
ticle interaction contains a spin-dependent part or not. In principle, a conical intersection amounts
to off-diagonal terms in the one-body Hamiltonian ĥ

(CI)
i which couple the different levels whereas

a spin-dependent interparticle interaction means that there is two-particle interactions Ŵspin that
can change the spin of particles. These terms read as follows:

ĥ
(CI),kk
i =

(
T̂i + Vkk(~̂ ir)

)
⊗ 1~r; ĥ

(CI),kj
i = Vkj(~ri)π̂jk (3)

Ŵspin =
∑

ν=x,y,z

(Sν ⊗ 1~r) Ŵ (~r, ~r′; t) (Sν ⊗ 1~r′) . (4)

Here, the operator π̂jk was defined, which makes level j appear in the coordinate space of level
k for the spinor orbital on its right. Furthermore, the representation Sν was introduced for the
general spin operators in ν = x, y, z direction. For problems including spin-orbit interactions the
folloing Hamiltonian ĥSO is added to the one-body Hamiltonian:

ĥSO = γ [α (p̂xS
y − p̂ySx) + β (p̂xS

y + p̂yS
x)] . (5)

The parameters α, β, γ are the prefactor of the Rashba spin-orbit term, Dresselhaus spin-orbit term
and the overall strength of the spin-orbit coupling (see also input parameters below). Generally,
when the above terms are present in the Hamiltonian, a transfer of population between the different
levels of the treated particles is allowed. The input variables necessary to control the program
through the MCTDHX.inp file in the case of multileveled or spinor particles are specified in the
following table 4.2.

System Parameters Namelist
Parameter Meaning Options
NLevel How many levels do the considered

particles have?
Integer, default 1.

Multi level Do the atoms have internal struc-
ture?

Logical, default .F.

Conical Intersection Does the one-body Hamiltonian con-
tain terms Vjk(~r) that couple differ-
ent internal states?

Logical, default .F.. If
set to .T., the potential
VTRAP EXT which is defined in
Get 1bodyPotential.F con-
tains one additional vector
that stores Vjk

InterLevel InterParticle Does the interparticle interaction
couple different internal states di-
rectly (attention: this is for mul-
tileveled atoms which are NOT
spinors

Logical, default .F.

xlambda<X> Interparticle-intra-level interaction
strength for non-spinors; <X>=1,2,3

Real, default 0.d0 .

21

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

xlambda12 Interparticle-inter-level interaction
strength for non-spinors;

Real, default 0.d0 .

Spinor Are the treated atoms spinors with
a spin-dependent interparticle inter-
action

Logical, default .F.

Lambda<X> spin-independent (<X>=1) and spin-
dependent (<X>=2) interparticle in-
teraction strength, respectively, for
each level.

Real array, dimension 10, de-
fault 0.d0 .

SpinOrbit Toggles inclusion of spin-orbit-
interaction in the Hamiltonian

Logical, default .F.

Rashba Prefactor Magnitude of Rashba-spin-orbit-
interaction

Real, default 0.d0

Dresselhaus Prefactor Magnitude of Dresselhaus-spin-
orbit-interaction

Real, default 0.d0

SpinOrbit Prefactor Magnitude of total spin-orbit
(Rashba + Dresselhaus) term

Real, default 0.d0

It is important to note that it is necessary to specify at least as many one-body potentials as
there are levels or spinor components in the treated particles. In the case of atoms featuring
a conical intersection, the number of potentials is NLevel + 1. This is done in the routine
Get NLevelPotentials in the Get 1bodyPotential.F source file. The available predefined mul-
tilevel potentials are collected in the following table 4.2.

whichpot Description Potential Parameters

HO1D Parabolic potentials with
different frequencies and off-
set for different spin compo-
nents or levels. This poten-
tial is defined for two-level or
spin-1

2
atoms, only.

V↑(x) = 1
2
p21x

2;
V↓(x) = 1

2
p22(x− p3)2 + p4

p1, p2 are the frequencies of
the ↑, ↓ components/levels,
respectively. p3 is the hor-
izontal displacement of the
two parabolas and p4 their
relative offset.

linearZ1D Parabolic optical confine-
ment with linear Zeeman
shift and a spatially homoge-
neous magnetic field in one
dimension.

VmF
(x) = 1

2
p21x

2 +mFp2|x| p1 is the frequency of the
optical confinement and p2
defines the magnetic field
strength.

Special parameters to treat ultracold atoms in an optical cavity

To deal with a system of bosons in interaction with an optical cavity, i.e., a field of photons
which in turn generates a one-body potential for the atoms through the dipole force, special input
parameters have been defined. These are listed in the following table 4.2.

22

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

System Parameters Namelist
Parameter Meaning Options
Cavity BEC Toggle cavity treatment Logical, default .F.
NCavity Modes How many modes to take into ac-

count treating the cavity
Integer, default 1

Cavity PumpRate Rate, at which the laser is pumping
the cavity (through the atoms)

Real, default 0.d0

Cavity LossRate Rate, at which photons are lost from
the cavity

Real, default 0.d0

Cavity K0 Magnitude of the wave-vector defin-
ing the resonance frequency of the
cavity

Real, default 0.d0

Cavity AtomCoupling Coupling strength of the atomic res-
onance to the pumping laser fre-
quency

Real, default 0.d0

Pump Switch Is the pumping laser intensity
ramped up exponentially, kept con-
stant and then ramped down expo-
nentially?

Logical, default .F.

RampupTime Time over which the pump laser in-
tensity is increased linearly up to
Cavity PumpRate.

Real, default 0.d0

RampdownTime Time over which the pump laser
intensity is kept constant at
Cavity PumpRate.

Real, default 0.d0

PlateauTime Time over which the pump laser in-
tensity is decreased linearly to 0.d0.

Real, default 0.d0

Pump Oscillate Does the pump power oscillate
[as ε sin(ωpt)] when it reached the
plateau in the exponential ramping
procedure?

Logical, default .F.

Pump Amplitude Amplitude ε of the oscillation
of the pump power in units of
Cavity PumpRate.

Real, default 0.d0

Pump Period Period ωp of the oscillation of the
pump power.

Real, default 0.d0.

X Cavity Pump Waist Gaussian envelope’s width for pump
laser for two-dimensional systems

Real, default 0.d0

Cavity Mode Waist Gaussian envelope’s width for cavity
mode in two-dimensional systems

Real, default 0.d0

Error Rescale Cavity Parameter in the integration
namelist to rescale the error toler-
ance of the integrator of the cavity
equation of motion

Real, default 1.d0

23

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Special parameters to treat atoms in optical lattices

MCTDH-X offers two ways of dealing with atoms in optical lattices. Lattice Hamiltonians can
be treated using an exact diagonalization treatment for one-, two-, and three-dimensional lat-
tices. Especially, in the two- and three-dimensional cases, the dimensionality of the Hilbert space
and the matrix that has to be diagonalized in the exact diagonalization approach is exploding
rapidly and the problem size can no longer be handled. For the larger systems, one has to use
the so-called MCTDBH approach, where the Bose-Hubbard Hamiltonian is expanded in a multi-
configurational basis with a number of effective single-particle states than there is lattice sites.
With this approach, a systematic improvement beyond mean-field theories such as the discrete
non-linear Schrödinger equation is possible. Contrary to the approaches like time-evolved block
decimation, matrix product states or time-dependent density-matrix renormalization group, MCT-
DBH can provide accurate predictions in time and for higher dimension than D = 1, because the
partitioning of the Hilbert space is done by the variational principle and not artificially introduced.
The parameters to select the former exact diagonalization or the latter MCTDBH approach are
collected in the following table 4.2.

System Parameters Namelist
Parameter Meaning Options
Bose Hubbard Do an exact diagonalization of a

Bose Hubbard Hamiltonian? Atten-
tion: Has to be used together with
JOB TYPE = ’FCI’ !

Logical, default .F.

Periodic BH Has the treated lattice system peri-
odic boundary conditions?

Logical, default .F.

DVR Parameters Namelist
DVR <I> If DVR <I> = 6, MCTDHB is ap-

plied to a lattice of that many sites
in I = X/Y/Z direction. Atten-
tion: has to be used together with
JOB TYPE = ’BOS’ !

Integer, default 4.

It is important to note that in the case that an exact diagonalization of a Bose-Hubbard Hamil-
tonian is done, the one-body potential offset is obtained from the routine Get BH Offset. If
MCTDHB applied to the Bose-Hubbard Hamiltonian the default routine Get 1bodyPotential

is used to compute the on-site potential energy offset. Both routines can be found in the file
./source/ini guess pot/Get 1bodyPotential.F .

The input of the analysis program

The analysis.inp file contains the desired quantities of analysis and specifies, for which points in
time these are needed. and table 8 for all currently available parameters in the analysis program
and their meaning.

24

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

Parameter Meaning Options
ZERO body

Time From Time from which to start analysis. Real, no default.
Time to Time at which to stop analysis. Real, no default.
Time Points Time points in analysis. Integer, no default.
Total Energy Comupte the total, kinetic, potential

and interaction energies
Logical, default .F.

Orbitals Output Create ASCII orbital output. Logical, default .T.
FTOrbitals Output Create ASCII Fourier-transformed

orbital output.
Logical, default .F.

Coefficients Output Create ASCII coefficients output. Logical, default .T.
MatrixElements Output Output of reduced one-body and

two-body density matrix elements.
Logical, default .F.

HamiltonianElements Output Output of one-body and two-body
Hamiltonian matrix elements.

Logical, default .F.

GetA Partial sums on the two-body
Hamiltonians’ matrix elements

Logical, default .F.

Dilation Factor to dilate real space in or-
der to obtain better k-space resolu-
tion (Only touched if AutoDilation
is false)

Integer, default 1

AutoDilation Toggle if threshold Kdip is used to
evaluate optimal dilation for FFTs
(only for one-dimensional computa-
tions!)

Logical, default .F.

Kdip Threshold to compute optimal dila-
tion for FFTs if AutoDilation is true

Real, default 0.0001

ONE body
Density x Output of diagonal of one-body den-

sity in space.
Logical, default .F. .

Density k Output of diagonal of one-body den-
sity in momentum space.

Logical, default .F. .

Pnot Computation of nonescape probabil-
ity Pnot?

Logical, default .F.

xstart Where does the integration on the
density for Pnot start?

Real, no default.

xend Where does the integration on the
density for Pnot stop?

Real, no default.

ystart Where does the integration on the
density for Pnot start?

Real, no default.

yend Where does the integration on the
density for Pnot stop?

Real, no default.

zstart Where does the integration on the
density for Pnot start?

Real, no default.

25

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

zend Where does the integration on the
density for Pnot stop?

Real, no default.

Phase Computation of the phase? Logical, default .F. .
Gradient Computation of the phase gradient? Logical, default .F. .
Cavity Order Computation of cavity order param-

eter
Logical, default .F. .

TWO body
Correlations X Computation of spatial correlation

functions on the full grid?
Logical, default .F. .

Correlations K Computation of momentum correla-
tion functions on the full grid?

Logical, default .F. .

StructureFactor Output of dynamic structure factor
and local correlation functions

Logical, default .F. .

xref x value of reference point of dynamic
structure factor

Real, default 0.d0

yref y value of reference point of dynamic
structure factor

Real, default 0.d0

zref z value of reference point of dynamic
structure factor

Real, default 0.d0

Correlation Coefficient Output of correlation coefficient τ =
〈~r1~r2〉−〈~r〉2
〈~r2〉−〈~r〉2

Logical, default .F. .

Geminals Toggle output of natural geminal oc-
cupations in GO PR.out

Logical, default .F. .

FullGeminals Toggle output of natural geminals in
<time>NzMy-x-geminals.dat files

Logical, default .F. .

corr1restr Computation of spatial first order
correlation functions on a restricted
grid?

Logical, default .F. .

xini1 Restricted grid start Real, no default.
xfin1 Restricted grid stop Real, no default.
xpts1 Number of grid points for restricted

grid.
Integer, no default.

corr1restrmom Computation of spatial correlation
functions on a restricted momentum
grid?

Logical, default .F. .

kxini1 Restricted grid start Real, no default.
kxfin1 Restricted grid stop Real, no default.
kpts1 Number of grid points for restricted

grid.
Integer, no default.

corr2restr Computation of spatial second order
correlation functions on a restricted
grid?

Logical, default .F. .

xini2 Restricted grid start Real, no default.
xfin2 Restricted grid stop Real, no default.

26

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

xpts2 Number of grid points for restricted
grid.

Integer, no default.

corr2restrmom Computation of momentum second
order correlation functions on a re-
stricted grid?

Logical, default .F. .

kxini2 Restricted grid start Real, no default.
kxfin2 Restricted grid stop Real, no default.
kpts2 Number of grid points for restricted

grid.
Integer, no default.

MANY body
lossops Loss operators, i.e., projectors on

N = 2 Hilbert space.
Logical, default .F. .

border Border partitioning N = 2 Hilbert
space for evaluation of the loss oper-
ators.

Real, no default.

Entropy Computation of diverse entropy
measures

Logical, default .F. .

NBody C Entropy Computation of entropy of matrix
elements of full N -body density ma-
trix

Logical, default .F. .

TwoBody Entropy Computation of entropy of 2-body
density matrix

Logical, default .F. .

SingleShot Analysis Toggle the output of random devi-
ates of the N-body density matrix.

Logical, default .F.

SingleShot FTAnalysis Toggle the output of random devi-
ates of the N-body momentum den-
sity matrix.

Logical, default .F.

NShots Number of single shots (random de-
viates of the N-body density) to
compute.

Integer, default 10

CentreOfMass Toggle sampling of centre-of-mass
operator

Logical, default .F.

CentreOfMomentum Toggle sampling of centre-of-
momentum operator

Logical, default .F.

ShotVariance Toggle computation of integrated
variance of single shots

Logical, default .F.

NSamples Number of samples to make from the
centre-of-mass operator

Integer, default 10000

anyordercorrelations X toggle output of higher
order correlations
ρ(p)(~rref , ..., ~rref , ~rorder−1, ~rorder−2)

Logical, default .F.

anyordercorrelations X toggle output of higher
order correlations
ρ(p)(~rref , ..., ~rref , ~rorder−1, ~rorder−2)

Logical, default .F.

27

4.2 Running the computation and analysis 4 INPUT FILE DRIVEN USAGE MCTDH-X

order specify order up to which correlation
functions are to be output

Integer, default 10

oneD toggle output of correlations with
one free variable ~rorder

Logical, default .T.

twoD toggle output of correlations with
two free variables ~rorder−1 and ~rorder

Logical, default .F.

c ref x x value of reference point for higher
order correlations

Real, default 0.d0

c ref y y value of reference point for higher
order correlations

Real, default 0.d0

c ref z z value of reference point for higher
order correlations

Real, default 0.d0

TWO D
MOMSPACE2D Output of 2D correlation functions’

g(1)(~r′1|~r1) and g(2)(~r′1, ~r1) in slices?
Logical, default .F. .

REALSPACE2D Output of 2D momentum correla-
tion functions’ slices?

Logical, default .F. .

REALSKEW2D Output of 2D skew correlation func-
tion g(1)(~r|−~r; t) and g(2)(~r1,−~r1; t)?

Logical, default .F. .

MOMSKEW2D Output of 2D skew momentum cor-
relation function g(1)(~k| − ~k; t) and

g(2)(~k1,−~k1; t)?

Logical, default .F. .

x1const Keep X-coordinate of first position
(momentum) ~r1 (~k1)) constant?

Logical, default .T. .

x1slice At which value to keep the X-
coordinate of ~r1 (~k1))?

Real, default 0.0.

y1const Keep Y-coordinate of first position
(momentum) ~r1 (~k1)) constant?

Logical, default .T. .

y1slice At which value to keep the Y-
coordinate of ~r1 (~k1))?

Real, default 0.0.

x2const Keep X-coordinate of second posi-
tion (momentum) ~r′1 (~k′1)) constant?

Logical, default .F. .

x2slice At which value to keep the X-
coordinate of ~r′1 (~k′1))?

Real, default 0.0.

y2const Keep Y-coordinate of second posi-
tion (momentum) ~r1 (~k1)) constant?

Logical, default .F. .

y2slice At which value to keep the Y-
coordinate of ~r′1 (~k′1))?

Real, default 0.0.

PROJ X Calculate effective density one-
dimensional potential Veff =∫
dξ
∑

ij ρijφ
∗
i (x, y, t)φj(x, y, t),

where ξ = x and/or y

Logical, default .F. .

28

4.3 Available Visualization Scripts 4 INPUT FILE DRIVEN USAGE MCTDH-X

DIR Specifying the direction for the effec-
tive one-dimensional potential.

Character, ‘X’ means ξ = x,
‘Y’ means ξ = y and ‘B’
means both ξ = x and ξ = y
are computed.

L z Computation of angular momentum
eigenvalue and matrix elements.

Logical, default .F. .

Table 8: MCTDH-X analysis parameters

This documentation of the variables in the analysis.inp is also available in the html code doc-
umentation and the in-line documentation of the example file. After an appropriate modification,
the program can be run (in an interactive shell) by typing

MCTDHX

or by using/adapting/submitting one of the example PBS scripts in the PBS Scripts directory
and submitting the computation into the queue of a job scheduling system.

The analysis can be run after a computation has finished and the modification of the analysis.inp
file with the following command:

MCTDHX_analysis

After the analysis program terminated successfully, ASCII files (structured as specified in the file
documentation/Analysis output documentation) are in the working directory of the program.
These files can be visualized using e.g. gnuplot or any other visualization software for data.

4.3 Available Visualization Scripts

The directory Visualization Scripts contains several bash scripts to process the ASCII output
of an MCTDHX analysis run into .mpg or .avi movies. For a list of the currently available scripts
and their function, see Table 9.

The way in which this is achieved, is by first processing the output files of an an MCTDHX analysis

run with mctdhx gnuplot and produce a time-series of images. Subsequently, this time-series of
images is encoded as a movie file using mctdhx mencoder. mctdhx gnuplot and mctdhx mencoder

are installed on your platform from the source tarball in the subdirectory External Software by
the MCTDH-X installation script. The automated way of using the visualization scripts is through
the visualization master script. The Visualisation Master Script (vms.sh) is a short bash script
that can be used to conveniently facilitate the creation of videos from a computation’s data. To
use vms.sh, just run it with the command

vms.sh <Movie Type> <Computation directory> <Lower plot range>

<Upper plot range> <#Gridpoints> <2D-Slice 1> <2D-Slice 2>

where Movie type is one of the scripts in the Visualisation Scripts directory. If Movie

type=‘‘all’’ is specified, all available movie scripts will be run for the particular computation.
The computation directory must contain the input file MCTDHX.inp of the computation. The other
arguments are optional and need not to be given. They can be used to fine-tune the output of the

29

4.3 Available Visualization Scripts 4 INPUT FILE DRIVEN USAGE MCTDH-X

Visualization Script Function

1D-CORR1-K Movie of the coherence |g(1)|2
1D-CORR2-RESTR-X Movie of the two-body correlations |g(2)| on a restricted

grid.
1D-DENSITY X-TIME-EVOLUTION-PM3D “Movie” of the density ρ(x, t), i.e., 2D plot where the

y-axis is time.

1D-CORR1-RESTR-K Movie of the coherence |g(1)|2 in momentum space on a
restricted grid.

1D-CORR2-X Movie of the two-body correlations |g(2).
1D-CORR1-RESTR-X Movie of the coherence |g(1)|2 on a restricted grid.
1D-DENSITY K Movie of the momentum density ρ(k, t).

1D-CORR1-X Movie of the coherence |g(1)|2.
1D-DENSITY X Movie of the density ρ(x, t).
2D-DENSITY M2 Movie of the density and the first two orbitals in two-

dimensional computations.
2D-DENSITY M3 Movie of the density and the first three orbitals in two-

dimensional computations.
2D-DENSITY M4 Movie of the density and the first four orbitals in two-

dimensional computations.
2D-ORB AVG PHASE DENSITY Lz Movie of Orbital average phase, density and angular mo-

mentum in two-dimensional computations.
2D-AVG-PHASE Movie of the average phase in two-dimensional compu-

tations.
2D-DENSITY K Movie of the momentum density in two-dimensional

computations.
2D-AVG-PHASE-PHASEGRADIENT-

DENSITY-ENERGY-LZ Movie of the average phase, phase gradient, density and
angular momentum in two-dimensional computations.

2D-DENSITY X Movie of the density in two-dimensional computations.
CI Movie of the CI coefficients.
nat occ loop Plotting the natural occupations of a computation.

Table 9: List of available visualization scripts.
All the above scripts take 5 command line arguments: start time, stop time, time

increment, number of orbitals, number of particles. To generate a movie of the coher-
ence on a restricted grid in momentum space one could do 1D-CORR1-RESTR-K 0 100 0.1 4 101

– this command would generate a movie for the first 100 time units in steps of 0.1 for an M = 4
computation with N = 101 particles. The visualization master script, vms.sh, automates the
usage of the above movie scripts.

30

4.4 Configuring the Monster Script 4 INPUT FILE DRIVEN USAGE MCTDH-X

analysis program, i.e., the plotting range, the gridpoints and the slices for the output of the corre-
lation functions of two-dimensional computations. If you need to find out the valid strings to use,
then run the command ./vms.sh and list of the available strings will be output to the screen. If
the command ./vms.sh <Movie Type> <Computation directory> ... is entered successfully,
it will generate all the ASCII data from the binary MCTDH-X output and build the movie(s). All
the visualization scripts in the Visualization Scripts subdirectory have five command line argu-
ments: timeInitial, the time at which the movie will begin; timeIncrement, the time difference
between each frame; timeFinal, the time at which the movie will end; MOrbs, the total number of
orbitals in the simulation and Npar, the number of particles in the simulation. vms.sh basically
calls the respective desired visualization script(s) with the appropriate arguments. Eventually, it
prints a short message ‘And we are happy.’ once the video has been successfully created. Of
course, one can also call the scripts in the Visualization Scripts directory manually by typing

<Visualization Script> <timeInitial> <timeFinal> <timeIncrement> <MOrbs> <Npar>

where <Visualization Script> can be chosen from the list in Table 9.

4.4 Configuring the Monster Script

This script basically acts as a secretary, creating subdirectories, copying files, editing text, and
submitting jobs in a coordinated fashion so that after the user configures just 2 text files, a single
function call can result in thousands of computers working for days to weeks to calculate up to a
combined 10-dimensional paramter scan. There are two steps to configuring MonsterScript.sh:
configuring the input file and preparing the run files. An example input file can be found at
Input Examples/ParameterScan.inp which contains in-line documentation (see 10). Inside the
working directory, one must place a properly configured ParameterScan.inp, libmctdhx.so, a
binary executable file consistent with $binary defined inside ParameterScan.inp, and an input
template consistent with $Input Template defined inside ParameterScan.inp. Once these 4 files
are properly configured and placed, the script is called by running
$MCTDHXDIR/MonsterScript.sh. The script scans up to 5 user defined relaxation parameters,
runs them until convergence is detected and, if desired, automatically scans each relaxation with
up to 5 user-defined propagation parameters. When running on a cluster, the script will automat-
ically restart jobs if they finish, due to time constraints, before the calculation is complete. To
circumvent job number restrictions on clusters, the script will build a series of runscripts that each
simultaneously run many calculations in a single job, rather than a single computation per job.

A little under-the-hood knowledge is useful to to effectively use and debug MonsterScript.sh.
The script initially calls $MCTDHXDIR/Computation Scripts/ParameterScan Propagation.sh

or $MCTDHXDIR/Comptuation Scripts/ParameterScan Relaxation.sh depending on the input
file configuration, which then iterates through the corresponding parameter set. As the script
loops through each parameter set, it calls either
$MCTDHXDIR/Scripts/IterateParameters.sh or $MCTDHXDIR/Scripts/IterateParameters relax.sh

which then perform the actual secretary functionality using about a dozen smaller scripts inside
$MCTDHXDIR/Scripts. If it is determined that a new calculation must be run when using a cluster,
a few lines are added to a runscript in the working directory called run#.sh for some number #. To
avoid duplicate computations, a file in the computation directory is created called RunFlag, which is
automatically deleted when the job runs out of time or the computation is complete, via some code
within the runscript. The runscript accumulates calculation jobs until the total number of nodes

31

4.4 Configuring the Monster Script 4 INPUT FILE DRIVEN USAGE MCTDH-X

requested reaches a threshold defined by $MPMDNodes in ParameterScan.inp, and then it is submit-
ted using (in most cases) a qsub command within either $MCTDHXDIR/Scripts/MPMDrun relax.sh

or $MCTDHXDIR/Scripts/MPMDrun prop.sh on line 106. It is often useful to comment this line for
testing purposes, as it will prevent the script from submitting any jobs, leaving it to only copy,
move, and edit files. Directories with incomplete calculations are stored in files Relax Array and
Prop Array*. Directories are removed from these files when their corresponding calculations are
complete, triggering an end of the corresponding ParameterScan *.sh function call when the array
is empty.

When MonsterScript.sh is run without any arguments, all lingering runscripts, RunFlag’s,
and arrays are cleared. If the user wishes to keep these files, they must run MonsterScript.sh

save.

Parameter Name Description Values

Do Relax Specifies whether to do or skip relax-
ations.

“T”, “F”

Do Propagations Specifies whether to do or skip propa-
gations

“T”, “F”

Propagation Start Specifies how to start propagations
when relaxation is skipped

“BINR”, “HAND”

Do Analysis Specifies whether to do or skip analysis “T”, “F”
MonsterName Suffix for job names “MON-

STER $MonsterName”
any string

runhost Specifies which cluster is used, or if no
cluster is used

“hermit”, “hornet”,
“maia”, “bwgrid”, “PC”

numnodes Specifies number of nodes used for re-
laxation jobs

Integer

MPMD Specifies whether to run in Multiple
Program Multiple Data mode, i.e. mul-
tiple computations per submitted job.
This only applies to scans on a cluster,
and is recommended if more than 20
computations are desired

“T”, “F”

MPMDjobs If using MPMD mode, this specifies
how many nodes are requested for each
job

Integer

maxjobs Maximum number of jobs allowed on
the queue (20 for hornet and hermit)

Integer

binary Name of MCTDHX executable in work-
ing directory

usually “MCTDHX intel”

Relaxation Template Name of input template for relaxations
in working directory

usually “MCTDHX.inp”

32

4.4 Configuring the Monster Script 4 INPUT FILE DRIVEN USAGE MCTDH-X

Propagation Template Name of input template for propaga-
tions in working directory (if identical
to Relaxation Template, the parame-
ters adjusted for the relaxation will be
copied, if not then the paramters ad-
justed for the relaxation will not be
copied).

usually “MCTDHX.inp”

Relaxtime Time to run relaxations for Positive number
NParameters Number of parameters to scan for re-

laxations
[1-5]

Parameter# #=1-5, name of relaxation parameter
#

Any parameter found in
MCTDHX.inp

List# #=1-5, specifies if a list of values is
used for relaxation parameter #

“T”, “F”

Parameter#List #=1-5, if $List#=“T”, specifies pa-
rameter # values to scan over

Array

Scan# Start #=1-5, if if $List#=“F”, speficies be-
ginning of range of relaxation parame-
ter # to be scanned

number

Scan# Stop #=1-5, if if $List#=“F”, speficies end
of range of relaxation parameter # to
be scanned

number

Scan# Step #=1-5, if if $List#=“F”, speficies step
of range of relaxation parameter # to
be scanned

number

MaxNodes Maximum number of nodes allocated
for a single propagation computation

Positive integer

Prop Time Final End time of propagation computations Positive number
Prop NParameters Number of propagation parameters to

scan over
[1-5]

Prop Parameter# #=1-5, name of propagation parameter
#.

Any parameter in “MCT-
DHX.inp”

Prop List# #=1-5, specifies if a list of values is
used for propagation paramter #

“T”,“F”

Prop Parameter#List #=1-5, if $Prop List#=“T”, speci-
fies propagation parameter # values to
scan over

list of appropriate values

Prop Scan# Start #=1-5, if $Prop List#=“F”, specifies
beginning of scan range for propagation
parameter #

Number

Prop Scan# Stop #=1-5, if $Prop List#=“F”, specifies
end of scan range for propagation pa-
rameter #

Number

Prop Scan# Step #=1-5, if $Prop List#=“F”, specifies
step of scan range for propagation pa-
rameter #

Number

33

5 MCTDH-X OUTPUT DOCUMENTATION

Table 10: Parameters inside ParameterScan.inp.

5 MCTDH-X main and analysis program output docu-

mentation

5.1 Main program output

MCTDH-X has several standard output files, and it will generate additional ASCII output if the
toggle Write ASCII is set to true in the input of a computation. Specifically, standard output
is comprised by the files NO PR.out, Initialization.dat, Error.dat, and Timing.dat. The
additional ASCII output is comprised of <time>orbs.dat and <time>coefs.dat files – these can
also be generated after a computation has finished by running the analysis program which processes
the binary data files PSI bin and CIc bin. Set aside the binary PSI bin and CIc bin and the
ASCII Initialization.dat files, all the above output files are column-formatted ASCII files.

5.1.1 Output structure in standard MCTDHX computations

For the case that atoms without internal structure are treated (Multi Level = .F.), the column
structure of the ASCII output files is described in the following tables 11,12,13,14,15.

Column 1 Column 2 to (1 +M) Column 2 +M
Time t Natural orbital oc-

cupations ρ
(NO)
M (t) to

ρ
(NO)
1 (t)

Energy E(t)

Table 11: NO PR.out file structure.
This table explains the column structure of the NO PR.out file. M stands for the number of orbitals
in the computation.

5.1.2 Output structure in block Davidson relaxations

In the case of block Davidson computations, several vectors of coefficients are relaxed simultane-
ously using the same set of orbitals. Consequently, the structure of the output changes as specified
in the following tables 16, and 17.

For every vector in the block, a separate file with natural occupations is generated whose
structure is identical to table 11. The naming convention for these files is NO PR.BL<state> where
<state> stands for the index of the vector in the block.

5.1.3 Output structure in multilevel MCTDHX computations

For the case that atoms with internal structure are treated (Multi Level = .T.), the column
structure of the ASCII output files is described in the following tables 18,19.

34

5.1 Main program output 5 MCTDH-X OUTPUT DOCUMENTATION

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8
No of in-
tegration
step

Time t Eorb(t) Eorb,rel(t) ECI(t) ECI,rel(t) Etot(t) EVt(t)

Table 12: Structure of the Error.dat file.
This table explains what is saved in the different columns of the Error.dat file. Eorb(t) and
Eorb,rel(t) are the absolute and relative integration errors from the orbitals’ equations of motion,
respectively. ECI(t) and ECI,rel(t) are the integration errors from the coefficients’ equations of
motion, respectively. Etot(t) = Eorb(t)+ECI(t) is the sum of the orbital and coefficients integration
errors and EVt(t) it an (experimental) error measure for the error due to a time-dependency of the
external one-body potential.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8
No of in-
tegration
step

Time t Execution
time

Tstep TCI Tρ TCI,Func TOrb

Table 13: Timing.dat file structure.
this table displays the column structure of the Timing.dat output file. Here,Tstep is the execution
time for the present integration step, TCI = Tρ + TCI,Func is the overall execution time in this step
spent on the configuration interaction, i.e., the coefficients part of the program. Tρ is the runtime
consumed to invert the matrix elements of the reduced one-body density, TCI,Func is the execution
time consumed in applying the Hamiltonian to the coeffcients vector. TOrb, finally, is the execution
time spent for evaluating the right hand side of the orbitals’ equations.

Column 1 to 3 Column 4 Column 5 Column 6 & 7 Column 8 & 9 Column 10 & 11 to
(10+2M) & (11+2M)

x, y, z DVR
weight

V (x, y, z, t) ρw(x, y, z; t) ρ(NO)(x, y, z; t) φ1(x, y, z; t) to
φM(x, y, z; t)

Column (11+2M +1)
& (11 + 2M + 2) to
(11 + 4M + 1) & (11 +
4M + 2)

φ
(NO)
M (x, y, z; t) to

φ
(NO)
1 (x, y, z; t)

Table 14: <time>orbs.dat file structure.
This table explains the column structure of the <time>orbs.dat output files of the main or analysis
program. x, y, z are the spatial coordinates,V (x, y, z, t) is the one-body potential, ρw(x, y, z; t) is
the density in working orbitals, ρ(NO)(x, y, z; t) is the density in natural orbitals, φ1(x, y, z; t)

to φM(x, y, z; t) are the working orbitals, and φ
(NO)
M (x, y, z; t) to φ

(NO)
1 (x, y, z; t) are the natural

orbitals. Please note, that some of the quantities are complex numbers which then are output
decomposed in their real and imaginary parts in two columns (as specified by the column numbers).

35

5.1 Main program output 5 MCTDH-X OUTPUT DOCUMENTATION

Column 1 Column 2 & Column 3
No of Coefficient Real and imaginary part of

the coefficient

Table 15: Structure of the <time>coef.dat files

Column 1 Column 2 to Column 2 · blocksize + 1
No of Coef-
ficient

Real and imaginary part of the coeffi-
cient for each vector in the block

Table 16: Structure of the <time>coef.dat files for block Davidson computations

Column 1 to 3 Column 4 Column 5 Column 6 & 7 Column 8 & 9
to (8+2M) &
(9 + 2M)

· · ·

x, y, z DVR
weight

V (x, y, z, t) ρ(NO)(x, y, z; t) φ
(NO)
M (x, y, z; t)

to
φ
(NO)
1 (x, y, z; t)

Repeat columns
6 · · · 9 + 2M for all
vectors in the block

Table 17: <time>orbs.dat file structure for block Davidson computations.
This table explains the column structure of the <time>orbs.dat output files of the main or analysis
program in the case of Block-Davidson relaxations. x, y, z are the spatial coordinates,V (x, y, z, t)

is the one-body potential, ρ(NO)(x, y, z; t) is the density in natural orbitals, and φ
(NO)
M (x, y, z; t)

to φ
(NO)
1 (x, y, z; t) are the natural orbitals. Please note, that some of the quantities are complex

numbers which then are output decomposed in their real and imaginary parts in two columns (as
specified by the column numbers). Importantly, the dots · · · imply that the columns 6 to 9 + 2M
are repeated for all the wavefunctions in the block Davidson computation.

36

5.2 Analysis program output 5 MCTDH-X OUTPUT DOCUMENTATION

Column 1 Column 2 to (1 +M) Column (2 +M) Column (3+M) to 3+M +Nl

Time t Natural orbital occupations
ρ
(NO)
M (t) to ρ

(NO)
1 (t)

Energy E(t) State populations (density) for
all levels

Table 18: NO PR.out file structure for computations with Multi Level=.T..
This table explains the column structure of the NO PR.out file. M stands for the number of orbitals
in the computation and Nl is the number of internal states considered.

Column 1 to 3 Column 4 Column 5 to
4 +Nl +NCI

Column 5 +
Nl + NCI &
6+Nl+NCI to
3 + 3Nl +NCI

& 4 + 3Nl +
NCI

Column 5 +
3Nl + NCI &
6 + 3Nl +NCI

to 3 + 5Nl +
NCI & 4 +
5Nl +NCI

x, y, z DVR weight V i(x, y, z, t)
and
V i
CI(x, y, z, t)

ρiw(x, y, z; t) ρi(NO)(x, y, z; t)

Column 5+5Nl+NCI & 6+5Nl+
NCI to 3 + 5Nl +NCI + 2MNl &
4 + 5Nl +NCI + 2MNl

Column 5 + 5Nl +NCI + 2MNl &
6+5Nl+NCI+2MNl to 3+5Nl+
NCI + 4MNl & 4 + 5Nl + NCI +
4MNl

φik(x, y, z; t) for i = 1, .., Nl and
k = 1, ..,M

φ
(NO),i
k (x, y, z; t) for i = 1, .., Nl

and k = M, .., 1

Table 19: <time>orbs.dat file structure for multilevel computations.
This table explains the column structure of the <time>orbs.dat output files of the main or analysis
program for the case that Multi Level=.T. was set. Nl is the number of internal states and NCI

is the number of conical intersections (NCI = 0 if Conical Intersection=.F.). Please note, that
the index of the internal state is always running first before the orbitals’ index. x, y, z are the
spatial coordinates,V i(x, y, z, t) is the one-body potential of internal state i, V i

CI(x, y, z, t) is the
coupling of the i−th conical interaction, ρiw(x, y, z; t) is the density in working orbitals for internal
stat i, ρi(NO)(x, y, z; t) is the density in natural orbitals for state i, φi1(x, y, z; t) to φM1 (x, y, z; t) are

the working orbitals in internal state i, and φ
(NO),i
M (x, y, z; t) to φ

(NO),i
1 (x, y, z; t) are the natural

orbitals in state i. Please note, that some of the quantities are complex numbers which then are
output decomposed in their real and imaginary parts in two columns (as specified by the column
numbers).

The structure of the output files described in tables 12,13,15, is identical for multilevel compu-
tations.

5.2 Analysis program output

The output of the MCTDH-X analysis software is toggled with the input file analysis.inp as
described in the table 8. Generally there are two kinds of different output file structures. Some
analysis quantities are scalar and their time series will be saved in a single file, like e.g., the
nonescape probability and some other quantities need one file per point in time, like e.g., the
density or momentum density. Orbitals Output and Coefficients Output toggle the output of

37

7 VERSION MANAGEMENT

the files <time>orbs.dat and <time>coefs.dat – their structure is the same as when one sets
the variable Write ASCII in the main programs input to .T., see tables 14 and 15.

The structure of the output files generated by setting the respective analysis variables is col-
lected in Appendix ?? in tables 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36, and 37.

6 Developer Guidelines

The MCTDH-X program package uses Mercurial as a version management and provides a docu-
mentation in .pdf format as well as a .html code documentation generated by Doxygen. Generally,
if you are planning to implement something useful it is recommended to browse the code documen-
tation in documentation/html/index.html to find out in which module to start. The package
developers will also be happy to help you with this.

In writing code, please stick to the following principles:

1. develop code in different branches of the repository (see section 7 below for how to cre-
ate/manage branches)

2. write code that is readable (use indentation and obvious variable and subroutine names)

3. write code that is modular (group written subroutines or variable declarations into modules)

4. use CamelCase naming conventions, where appropriate. Every new word in declarations (of
subroutines, variables or modules) should start with a capital letter. For subroutines and
modules their action(s) are prefixed with an underscore, like for instance
Get KineticEnergyAction AllOrbitals.

5. update this manual with new functionality and user guidance

6. add code documentation that doxygen can process, i.e., start commented lines with !> or !<.
This is especially crucial for new subroutines, such that other users are able to understand
how your routine works and may use or further develop it.

7. share your version by commiting it to your working copy and letting the developers know,
such that your development branch can be merged and tested to enter the next release of
the package (see paragraph on the version management below).

8. use the test-script testMCTDHX.sh to test your developments against reference values.

7 Version Management

The tool that is used to manage the development of the MCTDH-X software is Mercurial, in
terminal, hg. It is available on most Unix-based systems and facilitates the contribution of multiple
developers to a project. Mercurial is a distributed version management system, i.e., each user of it
has the the full version history available locally. The basic operations are collected in the following
list:

1. making a full copy of a repository with hg clone <repository location>

2. creating branches with hg branch <branch name>.

38

7 VERSION MANAGEMENT

3. showing a summary of the changes with respect to the last revision by hg status

4. adding and removing files by hg add <files> and hg remove <files>

5. add all new files and remove all missing files with hg addremove

6. showing the history of commit messages for all revisions by hg log

7. add a version number to your revision with hg tag <version label>. The structure of the
version label is explained below.

8. commiting changes made to a revision of the repository as a new revision with hg commit

-u <username>

9. pushing or pulling the changes made in the present repository to another repository by hg

push <repository location> or hg pull <repository location>.

10. updating the repository after pulling/pushing a changeset by hg update

It is important to note here that the version management of the central repository is not
open for all users. If you are interested in contributing, write an email to the developers at
mctdhx@ultracold.org to obtain an account for the software repository.

Version labels: The version labels for MCTDH-X follow the following syntax:

<major>.<minor><small><fix>

Here, <major> is an integer that is incremented by 1 when a new major feature is commited
(for instance the capability of the program to treat mixtures of indistinguishable particles). The
<minor> label is an integer, that is incremented by 1 when a new minor feature like, for instance, a
new operator or a new analysis routine is ready. The small> label is an integer which is incremented
by 1, whenever changes to the repository are made which do not correspond to a feature like, for
instance, an improvement of the efficiency or an update to the manual.

Contribution how-to:

The strategy taken for the development of MCTDH-X is that every contributor should create
her/his own branch(es) for the software development. Branches may be created with a name
describing the respective contribution or just the contributor’s name. When a new version is due
to be released, all the different branches will be merged into the default branch to form a release.

In the following, the basic steps to create branches and to push your current revision into the
main repository are described. These include to first clean up your current version, second make
sure if the changes you want to share as a contribution to the main repository are there and which
files are affected, third commit the changes as a new revision to your local repository and write
a thorough description of the implemented changes and fourth, push the changeset to the main
repository.

Create branch: To create a branch, run hg branch <name>. Typically <name> should be your
user name in the forum or descriptive for the features that are planned to be developed in this
branch.

39

mailto:mctdhx@ultracold.org

7 VERSION MANAGEMENT

Clean up: To remove the compiled included software, run make -f <Makefile.your-configuration>

purge and then, to remove the objects and libraries generated in the compilation of the main pro-
gram, run make -f <Makefile.your-configuration> clean .

Inspect the changeset: Check if indeed only the files that you intended to modify show up
when you run hg status. If unsure, look through the individual files and in case of doubt,
recompile/reinstall the program and test it again (for instance by running testMCTDHX.sh) and
start over with the first step.

Commit revision: Once you verified and tested your changes, commit them to your local repos-
itory by hg commit -u <username> . After issueing this command you will be prompted to write
a so-called commit message. The text should include a brief but concise description of the changes
entering the revision and a list of open tasks or known problems. The changelog of the program
is the timeline of these commit messages and they are therefore crucial to let the other users and
programmers know about changes.

Share the changes: After your local revision is prepared, you can share the changeset by
contributing it to the main repository by running hg push, which will prompt you for username
and password. If you get a message that notifies you of the creation of a remote head, please
contact the developers at mctdhx@ultracold.org since it’s likely that there is a conflict between
your changeset and the latest revision in the repository. In that case, it is necessary to merge the
heads and resolve the conflicts.

Feedback and suggestions as well as bug-reports are welcome anytime at
mctdhx@ultracold.org or http://ultracold.org/forum.

40

mailto:mctdhx@ultracold.org
mailto:mctdhx@ultracold.org
http://ultracold.org/forum

A PREDEFINED ONE-BODY POTENTIALS

A Predefined one-body potentials

whichpot Description Potential Parameters

HO1D 1D harmonic oscillator V (x) = 1
2
p21x

2 p1 ≡trap frequency.
HO2D 2D harmonic oscillator V (x, y) =

1
2
(p21x

2 + p22y
2)

p1/2 ≡trap frequency
in x/y

HO3D 3D harmonic oscillator V (x, y, z) =
1
2
(p21x

2 + p22y
2 + p23x

2)
p1/2/3 ≡trap frequency
in x/y/z

h+d 1D harmonic oscillator plus
Gaussian central barrier

V (x) = 1
2
(x − p1)

2

+p2exp(− (x−p1)2
2p23

)

p1 ≡ diplacement,
p2 ≡ height of Gaus-
sian, p3 ≡ width of
Gaussian

h2D+d 2D harmonic oscillator plus
Gaussian central barrier

V (x) = 1
2
(p21x

2 + p22y
2)

+p3exp(−((x)
2

2p24
+ (y)2

2p25
))

p1/2 ≡ trap frequency
in x-/y-direction, p3 ≡
height of Gaussian,
p4/5 ≡ width of Gaus-
sian in direction x/y

HO<X>D+td gauss <X>D harmonic oscillator
plus time-dependent [height
A(t)] Gaussian central bar-
rier in x-direction

V (x) = 1
2
p21((x − p2)2 + y2)

+A(t)exp(− (x−p5)2
2p26

)

p1 ≡ trap frequency
in x- and y-direction,
p2 ≡ displacement of
the minimum of the
trap w.r.t. the barrier,
p5 ≡ displacement of
Gaussian w.r.t. x = 0,
p6 ≡ width of Gaus-
sian barrier in direc-
tion x. Height A(t) ={
tp3
p4

t ≤ p4

p3 t > p4
Tilt Tilted triple well potential V (x) = −p1x+p2 sin(2x)4+

(x/2.2)20
p1 ≡ tilt parameter,
p2 ≡ depth of the
wells.

Tiltinit single well potential to ini-
tialize system for a propaga-
tion in the tilted triple well
potential Tilt.

V (x) = V (x) = −p1x +
p2 sin(2x)4+[(x− p3π

2
)/0.7]20

p1 ≡ tilt parameter,
p2 ≡ depth of the
wells, p3 is used to se-
lect displacement from
the origin.

OL HW 1D lattice in one dimension
with hard wall boundaries

V (x) ={
p1 sin(p2x)2 p3 < x < p4

1000 else

p1 ≡ depth of lat-
tice, p2 ≡ frequency
of lattice, p3, p4 are
the boundaries for the
hard walls.

41

A PREDEFINED ONE-BODY POTENTIALS

TDHIM Harmonic potential with
time-dependent frequency
for benchmarks with the
time-dependent harmonic
interaction Hamiltonian.

V (x) = 1
2
(1 + sin(t) cos(2t)

sin(1
2
t) sin(0.4t))x2

No parame-
ters, use with
which interaction

=’TDHIM’

tun Potential for tunneling to
open space dynamics

V (x) =
1
2
x2 x ≤ 2

2.2662969

exp(−2(x− 2.25)2) x > 2

no parameters, initial
wavefunction should
be localized at x = 0,
use whichpot=’ini’

for relaxation of initial
state.

thr Tunneling to open space
with a threshold

V (x) =
1
2
x2 x ≤ 2

Ax3 +Bx2

+Cx+D 2 < x ≤ 4

p1 x > 4

Parameter p1 defines
the threshold and
the polynomial coef-
ficients A = 1 − 1

4
p1,

B = 2.25p1 − 9.5,
C = 28 − 6p1,
D = 5T − 24.

DQD Double quantum dot poten-
tial

V (x) = −p1exp(−p2(x +
1
2
p3)

2)−p4exp(−p5(x− 1
2
p3))

p1 ≡ depth of first
quantum dot, p2 ≡
width of first quan-
tum dot, p3 ≡ dis-
tance of the two dots,
p4 ≡ depth of second
quantum dot, p5 ≡
width of second quan-
tum dot.

DQDLASER Double quantum dot poten-
tial illuminated by a laser
with time-dependent ampli-
tude Vlas(x, t).

V (x) = −p1exp(−p2(x +
1
2
p3)

2) − p4exp(−p5(x −
1
2
p3))+Vlas(x, t)exp(−p9(x−
p10)

2)

p1−5 ≡ same as in
DQD, Vlas(x, t) =
p7 cos(p8t) sin(π t

p6
)x

for t ≤ p6 and
Vlas(x, t) = 0 else.

zero No potential V = 0 No parameters.
Boundary conditions
determined by the
discrete variable
representation.

MQT ini Rectangular 1D box V (x) = ∞ ∀[x /∈
(0, 20 − p1)] and V (x) =
0 ∀[x ∈)0, 20− p1(]

p1 ≡ barrier width in
propagation MQT prop

MQT prop Rectangular 1D box, barrier
and open space

V (x) = ∞ ∀[x < 0] and
V (x) = 0 ∀[x ∈)0, 20 −
p1(] and V (x) = 0 ∀[x >
20] and V (x) = 0.05∀[x ∈
(20− p1, 20)]

p1 ≡ barrier width

42

A PREDEFINED ONE-BODY POTENTIALS

qpl 1D lattice with 2 frequen-
cies/amplitudes

V (x) = p1 cos(p2x) +
p3 cos(p4x)

p1/3 ≡ amplitudes of
the lattices, p2/4 ≡
frequencies of the lat-
tices.

rot2D 2D harmonic oscillator with
rotating anisotropy

V (x, t) = 1
2
((1 +

pa(t))(x cos(p1t) +
y sin(p1t))

2 + (1 −
pa(t))(y cos(p1t) −
x sin(p1t)))

p1 ≡ the rotation fre-
quency, pa ≡ the time-
dependent anisotropy.
p2 ≡ anisotropy max-
imum, p3 ≡ ramp-up
and ramp-down time
of the anisotropy, p4 ≡
plateau time at which
pa = p2.

stir2D 2D harmonic trap with ro-
tating stirring rod

V (x, t) =
1
2
(x2 + y2) +
p3exp[
− 1
p4

(x − p2 cos(p1t))
2 +

(y − p2 sin(p1t))
2]

p1 ≡ stirring fre-
quency, p2 ≡ stirring
radius, p3 ≡ height of
Gaussian rod, p4 ≡
width of Gaussian rod.

ellipse2D Elliptic two-dimensional
hard-walled potential well

V (x) ={
1000

√
(x
p1

)2 + (y
p2

)2 > p3

0 else

p1/2/3 ≡ parameters
defining the ellipse.

Table 20: Predefined potentials and parameters.

43

B PREDEFINED INTERACTION POTENTIALS

B Predefined interaction potentials

Which Interaction

and
Interaction Type

Description Potential

’gauss’ and 1, 2, 3, 4 Gaussian interparticle
interaction of width
Interaction Width= σ

W (~r, ~r′) = λ0
1

(
√
2πσ2)D

exp
(
− |~r−~r|

2

2σ2

)

0 Contact interaction with
constant strength λ0

W (~r, ~r′) = λ0δ(~r − ~r′)

’cos’ and 6 Contact interaction with
time-dependent strength
λ(t)

W (~r, ~r′) = λ0 cos(I1t)δ(~r − ~r′)

’sin’ and 6 Contact interaction with
time-dependent strength
λ(t)

W (~r, ~r′) = λ0 sin(I1t)δ(~r − ~r′)

’TDHIM’ and 5 Time-dependent version of
the harmonic interaction
model

W (~r, ~r′) = λ0(1 + 0.4 sin2(t))(~r − ~r′)2

’TDgauss1’ and 5 Gaussian interac-
tion with width
Interaction Width= σ
and time-dependent ampli-
tude

W (~r, ~r′) = (λ0 +

I1 sin(I2t))
1

(
√
2πσ2)D

exp
(
− |~r−~r|

2

2σ2

)

’TDgauss2’ and 5 Gaussian interac-
tion with width
Interaction Width= σ
at t = 0 that is time-
dependently modulated

W (~r, ~r′) = λ0
1

(
√

2π(σ2+I1 sin(I2t)))D

exp
(
− |~r−~r|

2

2(σ2 + I1 sin(I2t))
)

’lennart j’ and 4 I2– Screened Lennart-Jones
potential

W (~r, ~r′) = I1

(
σ

|~r−~r|12 −
σ

|~r−~r|6

)
for |~r−~r| > I2

and W (~r, ~r′) = I1

(
σ
I122
− σ

I62

)
for |~r − ~r| ≤ I2

’HIM’ and 4 Harmonic interaction model W (~r, ~r′) = λ0(~r − ~r′)2

Table 21: Predefined time-independent and time-dependent interaction potentials.
IX stands for Interaction ParameterX from the input, σ for Interaction Width, and D for the
dimensionality of the problem.

44

C STRUCTURE OF THE OUTPUT OF THE ANALYSIS PROGRAM

C Structure of the output of the analysis program

Column 1 to 3 Column 4 to 3 +Nl

x, y, z or kx, ky, kz ρi(x, y, z; t) or
ρi(kx, ky, kz; t)

Table 22: Structure of the <time>N<N>M<M>x-density.dat and <time>N<N>M<M>k-density.dat

files.
These files are generated if Density X/Density K it true. x, y, z and kx, ky, kz are the spatial
and momentum grid, respectively, Nl is the number of internal states, and ρi(x, y, z; t) and
ρi(kx, ky, kz; t) are the spatial and momentum densities, respectively. In the case of a compu-
tation treating atoms with internal structure, the index i runs through all internal states of the
considered atoms and one density is output for every state. In the names of the files <time> is the
time t <N> is the particle number, <M> is the orbital number.

Column 1 Column 2
Time t Nonescape probability

Pnot(t, xs, xe)

Table 23: The nonescape probability output file Nonescape.
If the input variable Pnot and the borders xs and xe were defined with xstart and xend in the
input of the analysis program, this file is created.

Column 1 Column 2 Column 3 Column 4
Time t Sρ−r(t) =

−
∫
d~rρ(~r; t)ln[ρ(~r; t)]

Sρ−k(t) =

−
∫
d~kρ(~k; t)ln[ρ(~k; t)]

SC(t) =∑
~n−|C~n(t)|2ln[|C~n(t)|2]

Column 5 Column 6 Column 7
Sn(t) =∑

i−
ni(t)
N
ln[ni(t)

N
]

I =
1∑

~n |C~n(t)|4

SNC (t) =∑
~n,~n′ −|C~n(t)|2ln[|C~n′(t)|2]

Table 24: Structure of the Entropy.dat file.
This file is generated when Entropy is set to true. The last column is only present if
NBody C Entropy=.T. is set in analysis.inp.

45

C STRUCTURE OF THE OUTPUT OF THE ANALYSIS PROGRAM

Column 1 Column 2 Column 3 Column 4
Time t Sρ(2)−r(t) =

−
∫
d~r1d~r2ρ

(2)(~r1, ~r2; t)
ln[ρ(2)(~r1, ~r2; t)]

Sρ−k(t) =

−
∫
d~k1d~k2ρ

(2)(~k1, ~k2; t)

ln[ρ(2)(~k1, ~k2; t)]

S
ρ
(GO)
k

(t) =∑
i−

ρ
(GO)
i (t)

N
ln[

ρ
(GO)
i (t)

N
]

Table 25: Structure of the TwoBody Entropy.dat file
. This file is generated when TwoBody Entropy is true.

Column 1
to 3

Column 4
to 6

Column 7 +
5(i− 1)

Column 8 + 5(i − 1) &
9 + 5(i− 1)

Column 10 +
5(i− 1)

x, y, z or
kx, ky, kz

x′, y′, z′ or
k′x, k

′
y, k
′
z

ρi(x, y, z; t)
or
ρi(kx, ky, kz; t)

ρ
(1)
i (x, y, z|x′, y′, z′; t) or

ρ
(1)
i (kx, ky, kz|k′x, k′y, k′z; t)

ρi(x
′, y′, z′; t)

or
ρi(k

′
x, k

′
y, k
′
z; t)

Column 11 + 5(i− 1)

ρ
(2)
i (x, y, z|x′, y′, z′; t) or

ρ
(2)
i (kx, ky, kz|k′x, k′y, k′z; t)

Table 26: Structure of the <time>N<N>M<M>x-correlations.dat and
<time>N<N>M<M>k-correlations.dat files for multilevel computations.
(For the explanation of the filenames, see table 22). These files are created, if the input variable
Correlations X and Correlations K, respectively, are set to be true. The files contain all nec-
essary quantities to compute the one-body as well as the diagonal of the two-body normalized
(Glauber-) correlation function g

(1)
i and g

(2)
i , respectively, for all internal states i. For instance,

|g(1)1 |2 =

∣∣∣∣ ρ
(1)
1 (x1,x′1;t)√

ρ1(x1;t)ρ1(x′1;t)

∣∣∣∣2 can be plotted as the value of ((Column 8)2 + (Column 9)2) divided

by (Column 7) × (Column 10).

Column 1
to 3

Column 4
to 6

Column 7 Column 8 & 9 Column 10

x, y, z or
kx, ky, kz

x′, y′, z′ or
k′x, k

′
y, k
′
z

ρ(x, y, z; t) or
ρ(kx, ky, kz; t)

ρ(1)(x, y, z|x′, y′, z′; t) or
ρ(1)(kx, ky, kz|k′x, k′y, k′z; t)

ρ(x′, y′, z′; t) or
ρ(k′x, k

′
y, k
′
z; t)

Column 11

ρ(2)(x, y, z|x′, y′, z′; t) or
ρ(2)(kx, ky, kz|k′x, k′y, k′z; t)

Table 27: Structure of the <time>N<N>M<M>x-correlations.dat and
<time>N<N>M<M>k-correlations.dat files.
(For the explanation of the filenames, see table 22). These files are created, if the input variable
Correlations X and Correlations K, respectively, are set to be true. The files contain all nec-
essary quantities to compute the one-body as well as the diagonal of the two-body normalized

(Glauber-) correlation function g(1) and g(2), respectively. For instance, |g(1)|2 =

∣∣∣∣ ρ(1)(x1,x′1;t)√
ρ(x1;t)ρ(x′1;t)

∣∣∣∣2
can be plotted as the value of ((Column 8)2 + (Column 9)2) divided by (Column 7)×(Column
10).

46

C STRUCTURE OF THE OUTPUT OF THE ANALYSIS PROGRAM

Column 1 & 2 Column 3 & 4 Column 5 Column 6

x, x′ or k, k′ ρ(1/2)(x|x′; t) or ρ(1/2)(k|k′; t) ρ(x; t) or ρ(k; t) ρ(x′; t) or ρ(k′; t)

Table 28: Structure of the <time>N<N>M<M><x/k>corr<1/2>restr.dat files.
The generation of these files is triggered by the analysis input variables
corr1restr,corr2restr,corr1restrmom,corr2restrmom. Similar to the above table 27,
the normalized correlation functions g(1) and g(2) can be computed from the contents of these
files, but for one-dimensional computations and on a restricted grid which is specified through the
analysis input variables <x/k>ini<1/2>,<x/k>fin<1/2>,<x/k>pts<1/2>, respectively.

Column 1
to 3

Column 4 Column 5 Column 6& 7

x, y, z or
kx, ky, kz

ρ(xref , yref , zref ; t)
or
ρ(kx,ref , ky,ref , kz,ref ; t)

ρ(x, y, z; t) or
ρ(kx, ky, kz; t)

ρorder({kx,ref , ky,ref , kz,ref}, x, y, z; t)
or
ρorder({kx,ref , ky,ref , kz,ref}, kx, ky, kz; t)

Table 29: Structure of the <time>N<N>M<M>x/k-order-<order>-correlations1D.dat

(For the explanation of the filenames, see table 22). These files are created, if the input variable
anyordercorrelations X and anyordercorrelations K as well as oneD, respectively, are set to
be true. The files contain all necessary quantities to compute the correlation functions up to order
<order>. Here, xref/yref/zref/kx,ref/ky,ref/kz,ref correspond to the reference point specified in the
input file by c ref x/c ref y/c ref z, respectively.

Column 1 Column 2 & 3

time t Real & imaginary part of τ = 〈x1x2〉−〈x〉2
〈x2〉−〈x〉2

Table 30: Structure of the CorrelationCoefficient.dat file. This file is created when
Correlation Coefficient it true.

Column 1 to 3 Column 4 and 5 Column 6 and 7 Column 8 to 10 Column 11 & 12
x, y, z Real and imag-

inary part of
ρ(2)(~r1 = ~r′1 =
~R,~r2 = ~r′2 = ~r)

Real and imag-
inary part of
ρ(1)(~r1 = ~R,~r′1 =
~r)

kx, ky, kz Real and imaginary
part of dynamic
structure factor
G = 1 + NF
(ρ(2)(~r1 = ~r′1 = ~R,
~r2 = ~r′2 = ~r − 1)

Table 31: Structure of the <time>N<N>M<M>x-StructureFactor.dat files. These files are output
if StructureFactor is true.

Column 1 Column 2 Column 3 Column 4
Time t P 2

0 (t) P 1
1 (t) P 0

2 (t)

Table 32: Structure of the lossops N2 <border>.dat files.
The generation of such a file is triggered by the lossops input variable being set to .T.. <border>
is controlled by the border input variable. For each point in time t, a line in this file contains the
probability P 2

0 (t) to find 2 particles to the left of border, the probability P 1
1 (t) to find one particle

to the left and one to the right of border, and the probability P 0
2 (t) to find two particles to the

right of border.

47

C STRUCTURE OF THE OUTPUT OF THE ANALYSIS PROGRAM

Column 1 to 4 Column 5 Column 6 Column 7 & 8 Column 9

r1x, r1y, r2x, r2y ρ(~r1; t) ρ(~r2; t) ρ(1)(~r1|~r2; t) ρ(2)(~r1|~r2; t)

Table 33: The structure of the <time>N<N>M<M><x/k><Slice 1>-<Slice 2>-correlations.dat

files
. These are output by the analysis program if the analysis input variable MOMSPACE2D or
REALSPACE2D is set to .T.. <Slice 1/2> specify which cut through the real- or momentum-space
density are in the file.

Column 1 and 2 Column 3 Column 4 and 5 Column 6 Column 7

r1x, r1y ρ(~r1; t) ρ(1)(~r1| − ~r1; t) ρ(−~r1; t) ρ(2)(~r1,−~r1; t)

Table 34: The structure of the <time>N<N>M<M><x/k>-SkewCorrelations.dat files
. These files are output of the analysis program if the analysis input variable MOMSKEW2D or
REALSKEW2D is set to .T. .

Column 1, 2, 3 Column 4 to 3 +Nshots

x, y, z Nshots samples of the N -body
density

Table 35: The structure of the <time>N<N>M<M><x/k>SingleShots.dat files
. These files are output of the analysis program if the analysis input variable SingleShot Analysis

or SingleShot FTAnalysis is set to .T. .

Column 1, 2, 3 Column 4
x, y, z Histogram of Nsamples samples of

the centre-of-mass-operator.

Table 36: The structure of the <time>N<N>M<M><x/k>CentreOfMass.dat files
. These files are output of the analysis program if the analysis input variable CentreOfMass or
CentreOfMomentum is set to .T. .

Column 1
to 3

Column 4 Column 5
to (5 +M)

Column (6 +M) &
(7 +M)

Column (8 +M) &
(9+M) to (8+3M)
& (9 + 3M)

x, y, z ξavg(x, y, z; t) ξ1(x, y, z; t)
to
ξM(x, y, z; t)

∇xξavg(x, y, z; t) &
∇yξavg(x, y, z; t)

∇xξ1(x, y, z; t) &
∇yξ1(x, y, z; t) to
∇xξM(x, y, z; t) &
∇yξM(x, y, z; t)

Table 37: The structure of the <time>N<N>M<M>phase.dat files.
The generation of the files is toggled by setting the analysis input variable PHASE to .T.. If addi-
tionally GRADIENT it set to .T. then, Columns (8 +M) to (9 + 3M) containing the phase gradients
will be generated. Here x, y, z are the coordinates, ξavg(x, y, z; t) is the average phase, ξ1(x, y, z; t)
to ξM(x, y, z; t) are the M orbital phases, ∇xξavg(x, y, z; t) & ∇yξavg(x, y, z; t) is the x and y com-
ponent of the average phase’s gradient, and ∇xξ1(x, y, z; t) & ∇yξ1(x, y, z; t) to ∇xξM(x, y, z; t) &
∇yξM(x, y, z; t) are the x and y components of the gradients of the M orbital phases.

48

	Installation
	Prerequisites for the main program
	Prerequisites for full functionality
	Running the installation

	An MCTDH-X Tutorial
	Computing an Eigenstate by Relaxation
	Computing the Time-Evolution of a System

	Program Structure
	Main Program
	Analysis Program
	Scripts

	Input File driven Usage MCTDH-X
	Defining the Hamiltonian
	Running the computation and analysis
	Available Visualization Scripts
	Configuring the Monster Script

	MCTDH-X output documentation
	Main program output
	Output structure in standard MCTDHX computations
	Output structure in block Davidson relaxations
	Output structure in multilevel MCTDHX computations

	Analysis program output

	Developer Guidelines
	Version Management
	Predefined one-body potentials
	Predefined interaction potentials
	Structure of the output of the analysis program

